Discuz! Board

 找回密码
 立即注册
搜索
热搜: 活动 交友 discuz
查看: 69|回复: 0

五分钟速读|A超 B超 M超 彩超:超声诊断原理大汇总

[复制链接]

1万

主题

1万

帖子

5万

积分

管理员

Rank: 9Rank: 9Rank: 9

积分
58026
发表于 2020-9-27 07:42:12 | 显示全部楼层 |阅读模式
<p data-mpa-powered-by="gulangu"><span></span><span><p><img src="image/20200927/f9d8d2acbc8bae028fb062b7e27c7975_1.jpg" /></p></span></p><p><br  /></p><p><span>提到超声医学,大多数人都会想到孕检时要做的B超。的确,B超是医院中使用最为广泛的超声检测方法。但除了B 超以外,常用的还有A超、M超、彩超等,这些检测方式都在其特定领域发挥着重要作用。思宇一文帮你明辨不同超声检测,明明白白做超声。</span></p><p><span line-inline="eKng"><span><p><img src="image/20200927/8afd97b91d0963b858eb275af1c9265b_2.jpg" /></p></span></span></p><p><span><strong>一、超声诊断</strong></span></p><p><span><strong><br  /></strong></span></p><p><span>超声诊断(ultrasonic diagnosis)是将超声检测技术应用于人体,通过测量了解生理结构的数据和形态,发现疾病,作出提示的一种诊断方法。超声诊断是一种<strong>无创、无痛、方便、直观</strong>的检查手段,尤其是B超,应用广泛,影响很大,与X射线、CT、磁共振成像并称为4大医学影像技术。</span></p><p><br  /></p><p><span><strong>二、超声诊断基本原理</strong></span></p><p><br  /></p><p><span>声波根据其频率不同,可以分为<strong>次声波、声波、超声波</strong>三种。超声成像是利用了自身的三大性质。</span></p><p><span line-inline="lxTh"><span><p><img src="image/20200927/762a352ddd01a3625f7a0fbbf8339002_3.png" /></p></span></span></p><p><strong><span>(一)反射、折射与衰减:</span></strong></p><p><strong><span><br  /></span></strong></p><p><span>声阻抗为声波传递介质中某点的声压和该点速度的比值,它等于密度与声速的乘积,<strong>物体密度越大声阻抗一般也就越大</strong>。超声通过声阻抗差达到1%的介质即可在其交界面上产生部分反射。</span></p><p><span line-inline="KsaZ"><span><p><img src="image/20200927/8a86e1f87333a9cc2484f9527b16dfb3_4.png" /></p></span></span></p><p><strong><span>机体各组织声阻抗皆有不同,故反射回波亦不同</span></strong><span>。脏器与脏器之间,脏器内的结缔组织与其他组织之间,正常组织与病理组织之间,各个不同病理组织之间,声阻抗都有不同程度的差异,超声射入机体内由表面到深层,将经过不同声阻抗和不同衰减特性的器官与组织,从而产生不同的反射和衰减。<strong>这种不同的反射与衰减是构成超声图像的基础</strong>。</span></p><p line="t8E1"><span>&nbsp;</span></p><p><strong><span>(二)衍射与散射:</span></strong></p><p><span><br  /></span></p><p><span>当声波遇到线度为1~2个波长的障碍物,声波的传播方向将偏离原来的方向产生衍射;当声波传播过程中遇到线度远远小于波长的粒子,粒子吸收声波能量后再向四周各个方向辐射,成为散射。</span></p><p><span line-inline="pkwf"><span><p><img src="image/20200927/9c8754a7e42b0d8e6edc3ed59362d1c8_5.png" /></p></span></span><span>散射与衍射</span></p><p line="16tC"><br  /></p><p><strong><span>(三)多普勒效应:</span></strong></p><p><span><br  /></span></p><p><span>当振源与散射体之间存在<strong>相对运动</strong><strong>时</strong>,振源发射的超声波射向散射体后,<strong>产生散射波的</strong><strong>频率发生改变</strong>,利用这种现象可对运动物体进行检测。</span></p><p><span line-inline="Efco"><span><p><img src="image/20200927/ad5a23107cf2aa4ec00813478208635a_6.jpg" /></p></span></span><span>超声多普勒效应测血流速度</span></p><p><br  /></p><p><strong>三、超声诊断类型及应用</strong><br  /></p><p><br  /><span></span></p><p><strong><span>(一) A型(Amplitude Mode)超声诊断法</span></strong></p><p line="pMxz"><br  /></p><p><span>又称超声示波诊断法或幅度调制型超声诊断法,简称A型(A-mode)超声或A超。A型超声诊断法是<strong>将超声回声信号以波的形式显示出来</strong>,纵坐标表示波幅的高度即回声的强度,横坐标表示回声的往返时间即超声所探测的距离或深度。</span></p><p><span><br  /></span></p><p><p><img src="image/20200927/14ef898f96a7d0487ddc11e98f9cd636_7.png" /></p><span></span></p><p><span>A型超声探测仪</span></p><p line="ip1B"><br  /></p><p><span>由于A型超声<strong>存在</strong><strong>一维局限性</strong>,即探测信息量少、盲目性大,自<strong>B超发展后已逐渐被抛弃</strong>。但这种方法<strong>对回声各种参数量的变化颇为灵敏</strong>,在脑中线、眼及脂肪层测量方面仍不失为理想手段,此外其对实性与液性鉴别亦很有发展前途。</span></p><p><br  /></p><p><strong><span>(二) B型(Brightness Mode)超声诊断法</span></strong><span> </span></p><p line="RzJx"><br  /></p><p><span>又称超声断层显像法,简称B型(B-mode)超声或B超。B型超声诊断法是<strong>将回声信号以光点明暗,即灰阶的形式显示出来</strong>。光点的强弱反应回声界面反射和衰减超声的强弱。这些光点、光线和光面构成了<strong>被探测部位二维断层图像或切面图像</strong>,即声像图。</span></p><p><span line-inline="EWDK"><span><p><img src="image/20200927/45a3bba7c7a18af8a1b493e5c919eb22_8.jpg" /></p></span></span><span>B型超声探测仪</span></p><p line="9uRC"><br  /></p><p><span>B型超声可进行<strong>实时显像</strong>,广泛地应用于各组织器官的疾病的诊断,如心血管系统疾病、肝胆疾病、肾及膀胱疾病、生殖系统疾病、脾脏病变、眼科疾病、内分泌腺病变及其它软组织病变的的诊断。最著名的便是在孕期对胎儿的检查。</span></p><p><br  /></p><p><strong><span>(三) M型(Motion Type)超声诊断法</span></strong><span> </span></p><p line="IDJU"><br  /></p><p><span>又称超声光点扫描法,只是在声像图上加入了慢扫描锯齿波,使回声信号从左向右自行移动扫描。纵坐标为扫描时间(即超声传播时间),横坐标为光点慢扫描时间,显示时间位置曲线图,如M型超声心动图。与A超相同,<strong>均反映的是一维空间结构</strong>。</span></p><p line="kGwK"><br  /></p><p line="vFCE"><span line-inline="wjYJ"><span><p><img src="image/20200927/9a677cc0b127f2b6f3ae5980587123a0_9.png" /></p></span></span></p><p line="nk2K"><span>图&nbsp;M型超声心动图</span></p><p line="DC0n"><br  /></p><p><span>M型超声主要应用于<strong>心血管系统的检查</strong>,可以动态地了解心血管系统形态结构和功能状况,并获取相应的心血管生理或病理的技术指标。</span></p><p line="KOeu"><span>&nbsp;</span></p><p><strong><span>(四) D型(Doppler Mode)超声诊断法</span></strong></p><p line="itWq"><br  /></p><p><span>即多普勒法,简称D型(D-mode),是应用多普勒效应原理设计的。当探头与反射界面之间有相对运动时,反射信号的频率发生改变,即多普勒频移,用检波器将此频移检出,加工处理,即可获得多普勒信号音。目前临床应用广泛的是经过进一步发展的<strong>彩色多普勒超声与经颅多普勒超声检测</strong>。</span></p><p><span line-inline="0y9M"><span><p><img src="image/20200927/7270217378069db69f203a38573bcada_10.jpg" /></p></span></span><span>图&nbsp;心脏彩超</span></p><p line="5Bob"><br  /></p><p><span>彩色多普勒血流显像(CDFI)或彩色多普勒显像(CDI)主要是利用血液中运动的红细胞对声波的散射,产生多普勒效应,经伪彩色编码技术,在二维图像上显示彩色血流影像。不同方向的血流以不同的颜色表示。彩色多普勒超声诊断仪同时具备频谱多普勒功能,可在彩色图像上定点取样,显示多普勒频谱图,并听取多普勒信号音。</span></p><p><span>&nbsp;</span></p><p><span>经颅多普勒超声 (TCD)又称脑彩,用较低频率的多普勒超声探查颅内动脉,显示为多普勒频谱图,用来诊断各种脑血管疾病,如脑血管畸形、脑动脉瘤,脑血管痉挛等。</span></p><p><br  /></p><p><strong><span>(五) 三维、四维成像法</span></strong></p><p line="NClh"><br  /></p><p><span>是近年来发展起来的医学影像技术,<strong>能显示直观的立体图像</strong>,可提供比二维超声更为丰富的信息。主要用于心脏疾病的研究与临床诊治,在妇产科、眼科、腹部及周围血管成像等方面有一定的应用。</span></p><p><span>&nbsp;<span><span><p><img src="image/20200927/3a4d0a2f8b4653873be6b26828659d55_11.jpg" /></p></span></span></span><span>图&nbsp;四维彩超胎儿成像图</span></p><p><br  /></p><p><strong><strong>四.</strong><strong>&nbsp;</strong><strong>超声诊断优缺点讨论</strong></strong></p><p line="CAYZ"><br  /></p><p><span>相对于其它影像检测方法,超声诊断具有一些明显优势:</span></p><p><span>(1)检测过程<strong>无创或微创</strong>,且<strong>价格低廉</strong>,可适用于各种年龄和人群的疾病诊断与健康普查;</span></p><p><span>(2)超声成像的<strong>信息丰富、层次清楚、图像清晰</strong>,且能够进行<strong>实时显示与动态观察</strong>;</span></p><p><span>(3)彩超能够<strong>精确判定血流动力学变化情况</strong>,尤其适用于心脏与血管病变的检查;</span></p><p line="pfEx"><strong><span></span></strong></p><p line="1hnF"><strong><span></span><span line-inline="wTnS"><span><p><img src="image/20200927/2564ff822cdb95b41c64fce586ec65e9_12.png" /></p></span></span></strong></p><p line="ay56"><br  /></p><p><span>但同时其也存在一定的局限性,如对肺等<strong>含气器官</strong>以及骨骼等<strong>高密度组织的显示效果较差</strong>,且当病变组织与正常组织界面之间的<strong>声阻抗差异较小时</strong>,<strong>在图像上难以显示出其差异性</strong>。使用探头进行检测因此其<strong>显示范围与整体观</strong>也会有一定局限。</span></p><p><span>&nbsp;</span></p><p><span>另外,目前超声探测操作大都是<strong>人为进行</strong>的,操作流程不一,对超声图像的采集<strong>经验成分较多</strong>,经验成熟的医师与新手的操作结果具有一定差异,因此图像采集标准有待进一步细化完善。</span></p><p><span><br  /></span></p><p><strong>看完了文章,顺便来回答几个小问题吧(根据以上内容判断对错)~</strong></p><p><br  /></p><p><span><iframe src="https://mp.weixin.qq.com/cgi-bin/readtemplate?t=vote/vote-new_tmpl&__biz=MzIyMTczMzk5OA==&supervoteid=474574835&token=1027596043&lang=zh_CN&auto=0" width="100%" height="580" frameborder="0"></iframe><span></span><span></span></span></p><p><br  /></p><p><p><img src="image/20200927/f1b27d4c1c0950002d135168cd199988_13.jpg" /></p></p><p><br  /></p><section donone="shifuMouseDownCard(&#39;shifu_c_027&#39;)"><p><span>&nbsp;</span></p><p><br  /></p><p><br  /></p><section><p><span><strong>往期精彩回顾</strong></span></p></section><section><p><span><strong><span><strong><span>▌</span><span>社群招募</span></strong></span></strong></span></p><p><span>医疗机器人社群招募</span><span><strong><span><strong><span><br  /></span></strong></span></strong></span></p><p><span><strong><span>▌</span></strong><span><strong>投融资</strong></span></span></p><p><span>上周大健康投融资速读</span><br  /></p><p><span><strong><span>▌</span></strong><strong><span>行业政策</span></strong></span></p><p><span>【最全】医疗器械行业政策类文章98篇</span><span><strong><span><br  /></span></strong></span></p><p><span><strong><span>▌</span></strong><strong>热门</strong><strong><span>行研</span></strong></span></p><p><span>康复外骨骼</span><span>&nbsp; | &nbsp;<span>微流控</span><span>&nbsp; | &nbsp;</span><span>医药冷链</span><span>&nbsp; | &nbsp;</span><span>临床质谱</span></span><span><span>&nbsp; | &nbsp;</span><span>基因测序</span><span>&nbsp; | &nbsp;</span><span>康复机器人</span><span>&nbsp; | &nbsp;</span><span>医生集团</span><span>&nbsp; | &nbsp;</span><span>听力辅具</span><span>&nbsp; | &nbsp;</span><span>心电监护仪</span><span>&nbsp; | &nbsp;</span><span>信息化医疗</span><span>&nbsp; | &nbsp;</span><span>数字PCR</span><span>&nbsp; | &nbsp;</span><span>家用医械</span><span>&nbsp; | &nbsp;</span><span>智慧医疗</span><span>&nbsp;&nbsp;| &nbsp;</span><span>激光美容</span><span>&nbsp; | &nbsp;</span><span>人工智能</span><span>&nbsp; | &nbsp;</span><span>液体活检</span><span>&nbsp; | &nbsp;</span><span>医疗器械融资租赁</span><span>&nbsp; | &nbsp;</span><span>医院管理集团</span><span>&nbsp; | &nbsp;</span><span>进口医械注册流程</span><span>&nbsp; | &nbsp;</span><span>宠物医疗</span><span>&nbsp; | &nbsp;</span></span><span>眼病诊疗</span><span>&nbsp;&nbsp;<span>|&nbsp;&nbsp;<span>骨内植入物螺钉</span></span></span><span>&nbsp; &nbsp;|&nbsp;</span><span>&nbsp;</span><span>儿童医疗器械</span></p><p><span><strong><span>▌</span></strong><span><strong>医械前沿</strong></span></span></p><p><span>两栖机器人</span><span>&nbsp; | &nbsp;</span><span>仿生假肢</span><span>&nbsp; | &nbsp;<span>磁热治疗</span>&nbsp; | &nbsp;<span>RNA干扰</span>&nbsp; | &nbsp;<span>3D打印</span>&nbsp; | &nbsp;<span>脑成像</span>&nbsp; | &nbsp;<span>数字药物</span>&nbsp; | &nbsp;<span>近红外光谱</span>&nbsp; | &nbsp;<span>软体机器人</span>&nbsp; | &nbsp;<span>纳米孔测序</span>&nbsp; | &nbsp;<span>液态金属</span>&nbsp; | &nbsp;<span>抗抑郁靶点</span></span><span><span>&nbsp; | &nbsp;</span><span>仿生机器人</span><span>&nbsp; | &nbsp;</span><span>飞检</span></span><span>&nbsp; &nbsp;|&nbsp; &nbsp;</span><span>MRI</span><span>&nbsp; &nbsp;|&nbsp; &nbsp;</span><span>隆胸手术</span></p><p><span><strong><span>▌</span><span>思宇印象</span></strong></span></p><p><span><span>?思宇沙龙<strong>&nbsp; &nbsp;&nbsp;</strong></span><span>康复机器人</span>&nbsp; | &nbsp;<span>医械技术转化</span>&nbsp; | &nbsp;<span>专利挖掘与布局</span></span></p><p><span><span>?思宇访谈<strong>&nbsp; &nbsp;&nbsp;</strong></span><span>泰格捷通</span><span>&nbsp; | &nbsp;</span><span>致众科技</span><span>&nbsp; | &nbsp;</span><span>迈迪思创</span><span>&nbsp; | &nbsp;</span><span>北航生医</span><span>&nbsp; | &nbsp;</span><span>波士顿大学</span><span>&nbsp; | &nbsp;</span><span>天智航张送根</span><span>&nbsp; | &nbsp;</span><span>医用机器人创新中心</span><span>&nbsp; | &nbsp;</span><span>郑诚功教授</span></span><span>&nbsp; </span><span>|&nbsp;</span><span>&nbsp;</span><span>汇通医疗</span><span>&nbsp; &nbsp;|&nbsp; &nbsp;</span><span>韩国Dong-Soo Kwon教授谈内窥镜机器人</span></p><p><span><span>?会议实录 &nbsp; &nbsp;</span><span>北航医工交叉</span><span>&nbsp; | &nbsp;</span><span>医工整合高峰论坛</span><span>&nbsp; | &nbsp;</span><span>骨科精准医疗</span><span>&nbsp; | &nbsp;</span><span>超快激光</span></span><span><span>&nbsp; | &nbsp;</span><span>机器人大会</span></span><span>&nbsp; &nbsp;|&nbsp; &nbsp;</span><span>康复辅具产业创新大会</span></p><p><span><span><span>?专家专场</span><span>&nbsp; &nbsp;&nbsp;</span></span><span>院士专场</span><span>&nbsp; |&nbsp;&nbsp;</span><span>思宇路演</span><span>&nbsp; | &nbsp;</span><span>约印医疗</span></span></p></section></section><p><br  /></p>
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

Archiver|手机版|小黑屋|Comsenz Inc. ( 浙ICP备17000336号-1 )

GMT+8, 2025-9-15 19:27 , Processed in 0.075820 second(s), 34 queries .

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表